- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bachmann, Hannah R (1)
-
Calabrese, Michelle (1)
-
Calabrese, Michelle A (1)
-
Hoover, Lena (1)
-
Miller, Audrey J (1)
-
Nistler, Abbie F (1)
-
Quan, Michelle (1)
-
Quinn, Siena M (1)
-
Rahman, Ehsanur (1)
-
Robertson, Benjamin (1)
-
Robertson, Benjamin P (1)
-
Rott, Gerald (1)
-
Rott, Gerald E (1)
-
Xiong, Boya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Robertson, Benjamin; Hoover, Lena; Rott, Gerald; Quan, Michelle; Calabrese, Michelle (, Cellulose)Despite national and international regulations, plastic microbeads are still widely used in personal care and consumer products (PCCPs) as exfoliants and rheological modifiers, causing significant microplastic pollution following use. As a sustainable alternative, microbeads were produced by extrusion of biomass solutions and precipitation into anti-solvent. Despite using novel blends of biodegradable, non-derivatized biomass including cellulose and Kraft lignin, resulting microbeads are within the shape, size, and stiffness range of commercial plastic microbeads, even without crosslinking. Solution processability and resulting bead shape and Young’s modulus can be tuned via biomass source, concentration, and degree of polymerization; biomass concentration, extrusion geometry, and precipitation and extraction conditions control the bead size. Lignin incorporation reduces the solution viscosity, which improves processability but also produces flatter beads with higher moduli than cellulose-only microbeads. While some lignin leaches from the beads when stored in water, adding surfactants like sodium dodecyl sulfate suppresses this effect, resulting in good mechanical stability over 2 months with no noticeable structural degradation. The stability of these mixed-source biomass microbeads—despite the absence of chemical crosslinking or derivatization—makes this route a promising, robust approach for obtaining environmentally-benign microbeads of tunable size and stiffness for use in PCCPs.more » « less
An official website of the United States government
